Llei de Planck

Llei de Planck per a cossos a diferents temperatures

En física, la llei de Planck descriu la quantitat d'energia electromagnètica amb una longitud d'ona determinada radiada per un cos negre en equilibri tèrmic (és a dir, la radiància espectral d'un cos negre). La llei porta el nom de Max Planck, que originalment la va proposar el 1900. La llei va ser la primera a descriure amb precisió la radiació del cos negre, i resoldre la catàstrofe ultraviolada. És un resultat pioner de la física moderna i la teoria quàntica.

En termes de freqüència (ν) o longitud d'ona (λ), la llei de Planck s'escriu com:[1][2][3]

    ,o bé    

on B és la radiància espectral, T és la temperatura absoluta del cos negre, kB és la constant de Boltzmann, h és la constant de Planck, i c és la velocitat de la llum. Però aquestes no són les úniques maneres d'expressar la llei; expressar-ho en termes de nombre d'ona en lloc de freqüència o longitud d'ona també és comú, com ho és l'expressió en termes del nombre de fotons emesos en una determinada longitud d'ona, en lloc de l'energia emesa. En el límit de baixes freqüències (és a dir, longituds d'ona llargues), la llei de Planck es converteix en la llei de Rayleigh-Jeans, mentre que en el límit d'altes freqüències (longituds d'ona curtes) que tendeix a l'aproximació de Wien. La longitud d'ona en què es produeix el màxim d'emissió ve donada per la llei de Wien i la potència total emesa per unitat d'àrea ve donada per la llei d'Stefan-Boltzmann. Per tant, a mesura que la temperatura augmenta la brillantor d'un cos canvia del vermell al groc i al blau.

Max Planck va desenvolupar la llei el 1900, originalment només amb constants determinades empíricament, i més tard va mostrar que, expressat com una distribució d'energia, és l'única distribució estable de radiació en equilibri termodinàmic.[4] Com a distribució d'energia és una de la família de distribucions d'equilibri tèrmic, que inclouen la distribució de Bose-Einstein, la distribució de Fermi-Dirac i la distribució de Maxwell-Boltzmann.

Corbes d'emissió de cossos negres a diferents temperatures comparades amb les prediccions de la física clàssica anteriors a la llei de Planck.

La llei de Planck descriu la quantitat d'energia que irradien els objectes, i més específicament la quantitat d'energia que s'irradia per una freqüència (o longitud d'ona) donada. Es quantifica com irradien poca energia els objectes a baixes temperatures, els objectes calents desprenen radiació de color vermell opac i emeten una quantitat perceptible de calor, i els objectes molt calents (com el sol) brillen de color groc o blau-blanquinós. La llei dona la potència normal irradiada a partir d'una unitat d'àrea de l'objecte en angle sòlid dins d'una banda de freqüències d'ample centrat en una freqüència ν. Com a tal, la radiància espectral Bν(T) té unitats de m-2·sr-1·Hz-1 quan s'expressa en unitats del SI.

Aquest significat nominal és però inexacte perquè la radiació varia amb l'angle i la freqüència. Es fa necessari per la disminució d'unitat d'àrea, unitat d'angle sòlid i unitat d'amplada de banda als seus homòlegs infinitesimals δA, δΩ i δν. La potència irradiada infinitesimal normal a partir d'una superfície δA de l'element en angle sòlid δΩ dins d'una amplada de banda δν ve donada llavors per Bν(T)δAδΩδν. La potència total radiada per sobre de qualsevol regió s'obté mitjançant la integració a través de la regió pel que fa a aquestes tres quantitats.

Tal com la termodinàmica dels gasos ordinaris compostos de molècules pot entendre's utilitzant la mecànica estadística, la llei de Planck es pot derivar mitjançant la visualització de la radiació com un gas de bosons sense massa (com els fotons) en equilibri tèrmic. Si la temperatura varia, variarà el nombre de fotons i energia emesos fins a omplir la cavitat amb una distribució de Planck a la nova temperatura, i la pressió i la densitat d'energia d'un gas de fotons en equilibri, és enterament determinada per la temperatura. Això difereix en els casos dels gasos materials, per als quals la pressió i la densitat d'energia depenen del nombre total de partícules i de les seves propietats, com ara la massa. D'aquesta manera la distribució de Planck sorgeix com un límit de la distribució de Bose-Einstein, que descriu la distribució d'energia dels bosons en equilibri termodinàmic.

La radiació obeeix la llei de Planck a l'interior d'una cavitat amb parets opaques mantingudes a una certa temperatura fixa, o prop de la superfície d'un cos negre. La radiació és isotròpica, homogènia, no polaritzada, i incoherent, i la distribució de Planck és l'única distribució per a la radiació electromagnètica en equilibri termodinàmic.[5]


© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search